

Selected Enhanced Fidelity AIM Methods

Dennis M. Dimiduk, Rollie Dutton Mike Uchic, & Jeff Simmons

Materials and Manufacturing Directorate
Air Force Research Laboratory

Triplicane Parthasarathy & Chris Woodward

UES, Inc. 4401 Dayton-Xenia Road Dayton, OH 45432-1894

AIM System Architecture

What About Phase II & Beyond?

In general, demand is for methods to treat unknown (without database)

Numerical descriptions needed for scope & fidelity in performance prediction (property minima & fracture are locally dominated)

These require development and adaptation to system architecture

Thus AFRL Focus:

Prediction, quantification & representations of structure evolution & kinetics

Structure-sensitive numeric descriptions of properties

Overlay of 'homogenized' or 'fast-acting' models, validation/tuning procedures, & interlace with design/architecture

Need for Microstructure-Based Plasticity

From Concepts to Realities

Last year's 'sketchy' concept

Briefings on Today's Progress

Phase Field (Simmons, 20min)

Plasticity Modeling (Parthasarathy, 20min)

Advanced Experimental Methods

- 3D Quantification (Uchic, 10min)
- Representation (Simmons, 15min)
- Micro- & Nano-scale Tests (Uchic, 15min)

Broader View & Discussion (Dimiduk, All)

Architecture & Implementation of Phase Field Software

3D, Isothermal γ - γ ' Coarsening

Clear framework identified...real dimensionality, thermodynamics evolving!

Microstructure Representations

Principal Component Analysis (KLT)

Revolutionary longer-term approach to capture all information contained in microstructure

Microstructure

Beyond Analytical Strength Models

Needs Development Within Atomistics

$$\sigma_{y}(C_{i},T,\varepsilon,\dot{\varepsilon},...)=$$

$$\sigma_{y}(C_{i}, T, \varepsilon, \dot{\varepsilon}, ...) = \int_{\gamma} \left(\frac{T_{o}}{T}\right) \left(\sum_{i} \frac{dc}{\sqrt{dC_{i}}} \sqrt{C_{i}}\right) + Mf_{t}\left(\frac{\Gamma_{APB}}{b}\right)$$

Obtain by Dislocation Kinetics Simulation

Obtain by FEM Simulation of Grain Distribution Effects

+
$$f_p \left[\sigma(T)_{Ni_3Al} + \sum_i \left(\frac{dc}{dC_i} C_i \right) \right]$$
 + $f_p k_y^{\gamma'} \frac{1}{\sqrt{d_{\gamma'}}}$ + $(1 - f_p) k_y^{\gamma} \frac{1}{\sqrt{d_{\gamma'}}}$

Numeric methods need and interface to AIM system

Unknown New Materials

3D sectioning experiments

Advanced simulation & experiments

Image: Small-scale property measurements

The structure representations intrinsic grain-level properties

The structure representations intrinsic grain-level properties

The structure representations intrinsic grain-level properties

Dimiduk, Parthasarathy, Uchic, and Rao, 2002

Treating Unknown New Materials

Properties of <u>Representative Volume Element</u> (RVE) From Mesoscale and Analytical Tools

$$\dot{\tau} = \left\{ h - \left(\frac{\tau - \tau_o}{\tau_s - \tau_o} \right) h \right\} \left(\dot{\gamma} \dot{\gamma}_o \right)^m \quad \tau$$

Microstructure-Sensitive
Representations (UMATs for
'intrinsic material' RVEs; results
used in Ramberg-Osgood or Walkerlike forms, or "Curve Generator," etc)

Efficient Experiments for New Materials

3-Dimensional Characterization of γ and Carbides

Rapid Experiments, Modeling, & Characterization

Micro- & Nano-Scale Property Measurement

Unprecedented Novel & Efficient Experiments Emerging!

Payoff: Materials & System Prognostics

Material State Definition

- Characterize each disk's microstructure and damage state at the mesoscale
- Utilize DARPA/AF AIM technology – stochastic life prediction
- Material state sensing
 - Electron backscatter diffraction (EBSD)
 - Acoustic attenuation
 - Others...
- Define the probability of cracking for each disk

MS & E Paradigm

